Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ figsharearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2013
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2014
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
figshare
Other literature type . 2014
License: CC BY
Data sources: Datacite
Environmental Technology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor

Authors: Eveline Volcke; Mark C.M. van Loosdrecht; Cristian Picioreanu; Md. Salatul Islam Mozumder;

Effect of heterotrophic growth on autotrophic nitrogen removal in a granular sludge reactor

Abstract

This study deals with the influence of heterotrophic growth on autotrophic nitrogen removal from wastewater in a granular sludge reactor. A mathematical model was set-up including autotrophic and heterotrophic growth and decay in the granules from a partial nitritation-anammox process. A distinction between heterotrophic bacteria was made based on the electron acceptor (dissolved oxygen, nitrite or nitrate) on which they grow, while the nitrogen gas produced was ‘labelled’ to retrieve its origin, from anammox or heterotrophic bacteria. Taking into account heterotrophic growth resulted in a lower initial nitrogen removal, but in a higher steady state nitrogen removal compared with a model in which heterotrophic growth was neglected. The anammox activity is related with the fact that heterotrophs initially use nitrite as electron acceptor, but when they switch to nitrate the produced nitrite can be used by anammox bacteria. Increased anammox activity in the presence of heterotrophs, therefore, resulted in a marginally increased N2 production at steady state. Heterotrophic denitrification of nitrate to nitrite also explains why small amounts of organic substrate present in the influent positively affect the maximum nitrogen removal capacity. However, the process efficiency deteriorates once the amount of organic substrate in the influent exceeds a certain threshold. The bulk oxygen concentration and the granule size have a dual effect on the autotrophic nitrogen removal efficiency. Besides, the maximum nitrogen removal efficiency decreases and the corresponding optimal bulk oxygen concentration increases with increasing granule size.

Keywords

Nitrates, Sewage, Nitrogen, Heterotrophic Processes, Models, Theoretical, Wastewater, Waste Disposal, Fluid, Water Purification, Oxygen, Kinetics, Bioreactors, Biomass, Organic Chemicals, Particle Size, Nitrites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    96
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
96
Top 1%
Top 10%
Top 10%
Green