
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of constant magnetic field on anaerobic digestion of algal biomass

pmid: 26672642
The aim of the study was to determine the impact of the constant magnetic field (CMF) application on the effectiveness of anaerobic digestion of algal biomass. The highest yield of biogas in the range of 448.9 L/kg volatile solids (VS) to 456.6 L/kg VS was observed in the variants, in which the retention time in the CMF-exposed area ranged from 144 to 216 min/d. Under these conditions, the concentration of methane in the biogas was nearly 65.0%. The increase in the contact time of the fermentation medium with the CMF-exposed area had a significant impact of reducing the effectiveness of anaerobic digestion. The lowest biodegradation was observed when the retention time was 432 min/d. Under such condition, 281.1 L of biogas/kg VS with methane content of 41.8% was obtained. A correlation between the time of exposure to CMF and the values of parameters characterizing the methane production was found.
Biodegradation, Environmental, Magnetic Fields, Microalgae, Anaerobiosis, Biomass
Biodegradation, Environmental, Magnetic Fields, Microalgae, Anaerobiosis, Biomass
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
