
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Removal of Naphthenic Acids from Liquid Petroleum: Theoretical Study

Authors: P. Pourhossein; Siavash Riahi; Mohammad Reza Ganjali;
Abstract
Naphthenic acids are naturally occurring compounds that constitute part of the petroleum acids. They are corrosive species, and are toxic to a variety of organisms. Therefore, the removal of them is regarded as one of the most important issues. In this study, density functional theory approach has been devoted to investigate the adsorption of some naphthenic acids (e.g., benzoic acid, cyclohexan carboxylic acid, cyclohexan propionic acid) on magnesium oxide. The effect of aromaticity of the ring and the hydrocarbon chain of the naphthenic acids has been explored. Interaction energies, dipole moment, polarizability and energies of frontier orbitals have been calculated.
Related Organizations
- University of Tehran Iran (Islamic Republic of)
- University of Tehran Iran (Islamic Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
13
Top 10%
Average
Top 10%