Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2006
Data sources: HAL INRAE
International Journal of Phytoremediation
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Testing of Outstanding Individuals ofThlaspi Caerulescensfor Cadmium Phytoextraction

Authors: Schwartz, Christophe; Sirguey, Catherine; Peronny, Sylvie; Reeves, Roger; Bourgaud, Frederic; Morel, Jean-Louis;

Testing of Outstanding Individuals ofThlaspi Caerulescensfor Cadmium Phytoextraction

Abstract

Thlaspi caerulescens is known to hyperaccumulate high quantities of Cd with Cd concentrations up to 3000 mg kg(-1) in some populations from south of France. However, within these populations, the Cd concentrations can vary widely from plant to plant in a way that appears to be not entirely due to variations in soil Cd. The aim of this work was to investigate the variability in the Cd uptake ability of individual plants within a population and among seedlings grown from seeds from a single plant. Ten populations of T. caerulescens plants were selected from four locations (V: Viviez; SF: Saint Félix-de-Pallières; LB: Le Bleymard; CMA: Col du Mas de l'Air) depending of the extent and soil homogeneity of the site. One population from CMA consisted of the progeny of a single maternal plant. Hundred plants of each population were grown for three months in the same homogeneous and lightly Cd-polluted soil (about 20 mg total Cd kg(-1) dry soil). Cadmium uptake behavior of the plants was monitored by labeling the soil with 109Cd. To allow partial plant destruction, radioanalysis was performed on the largest leaf of each plant as an indicator of the total Cd concentration in plant shoots. Results showed significant differences in biomass production and Cd uptake by T. caerulescens between sites and between populations within sites. We observed a wide intra-population variation in biomass, Cd concentration and total Cd uptake. For these properties, 1 to 5 percents of the plants in each population varied by more than a factor of two from the mean values. The mean Cd uptake by the single-plant population from CMA was more than 40% higher than for the population at large. T. caerulescens would respond to traditional selection methods, which would significantly improve the phytoextraction of Cd.

Country
France
Keywords

cadmium, [SDV]Life Sciences [q-bio], Industrial Waste, Plant Roots, PHYTOEXTRACTION, Humans, Soil Pollutants, métal lourd, Biomass, THLASPI CAERULESCENS, soil pollution, [ SDV ] Life Sciences [q-bio], VARIABILITE, pollution du sol, Thlaspi, [SDV] Life Sciences [q-bio], Biodegradation, Environmental, hypéraccumulation, absorption, Plant Shoots, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Average