Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
VBN
Article . 2020
Data sources: VBN
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Electric Power Components and Systems
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design and Characteristic Investigation of Novel Dual-Stator V-Shaped Magnetic Pole Six-Phase Permanent Magnet Synchronous Generator for Wind Power Application

Authors: Raja Ram Kumar; Chandan Chetri; Priyanka Devi; Ram Khelawan Saket; Frede Blaabjerg; Padmanaban Sanjeevikumar; Jens Bo Holm-Nielsen;

Design and Characteristic Investigation of Novel Dual-Stator V-Shaped Magnetic Pole Six-Phase Permanent Magnet Synchronous Generator for Wind Power Application

Abstract

This paper describes the characteristic investigation of the Novel Dual-stator V-Shape Magnetic Pole Six-Phase Permanent Magnet Synchronous Generator (NDSVSMPSP-PMSG) for wind power application. The proposed generator has V-shaped embedded magnetic pole in the rotor and six-phase winding in both the stator. The proposed generator has high-power density and high efficiency. For emphasizing the significance of the proposed generator, the characteristics of the NDSVSMPSP generator are analyzed and compared to one of the traditional generators, i.e., the Dual-stator Surface Mounted Six-Phase Permanent Magnet Synchronous Generator (DSSMSP-PMSG). For the design and characteristic investigation of both the generator, Finite Element Method (FEM) is chosen because of its high accuracy. Two modes of FEM analysis are considered, namely magneto-statics and transients. The magneto static analysis is used for the study of flux line and flux density distribution, while the transient analysis is considered for the generator’s characteristic investigation. The performance characteristics such as generated Electromotive Force (EMF) for both inner and outer stator, Percentage Total Harmonic Distortion (THD) of developed voltage, Developed EMF vs rpm, terminal voltage vs. current, developed rotor torque vs time, percent (%) ripple content in torque, and percent efficiency vs current for both generators are investigated. As a result, it can be stated that the power density and reliability of the proposed generator is higher than that of the traditional generator.

Country
Denmark
Keywords

V-shaped, permanent magnet synchronous generator, finite element method (FEM), multiphase machines, six-phase, wind power, dual-stator

Powered by OpenAIRE graph
Found an issue? Give us feedback