
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Power Flow via Teaching-Learning-Studying-Based Optimization Algorithm

handle: 11375/31129
The teaching-learning-based optimizer (TLBO) algorithm is a powerful and efficient optimization algorithm. However it is prone to getting stuck in local optima. In order to improve the global optimization performance of TLBO, this study proposes a modified version of TLBO, called teaching-learning-studying-based optimizer (TLSBO). The proposed enhancement is based on adding a new strategy to TLBO, named studying strategy, in which each member uses the information from another randomly selected individual for improving its position. TLSBO is then used for solving different standard real-parameter benchmark functions and also various types of nonlinear optimal power flow (OPF) problems, whose results prove that TLSBO has faster convergence, higher quality for final optimal solution, and more power for escaping from convergence to local optima compared to original TLBO.
- Shiraz University of Technology Iran (Islamic Republic of)
- University of Isfahan Iran (Islamic Republic of)
- McMaster University Canada
- University of Isfahan Iran (Islamic Republic of)
- Babol Noshirvani University of Technology Iran (Islamic Republic of)
46 Information and Computing Sciences, 4602 Artificial Intelligence
46 Information and Computing Sciences, 4602 Artificial Intelligence
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
