
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Are transparent double-skin facades effective for energy retrofit? Answers for an office building - with and without photovoltaic integration

handle: 11588/888793
Buildings account for an important share of global energy consumption and CO2 emissions, so increasing energy efficiency in buildings is essential to ensure an energy transition and sustainable development. In this study, we evaluate the energy benefits obtained through the application of a double-skin façade (passive façade). Subsequently, this is combined first with an airflow network and a control logic for opening windows (active façade) and secondly with transparent photovoltaic modules. The proposed measures are applied to an office building at the University of Naples Federico II. Building’s thermal and energy performance are evaluated using EnergyPlus software, starting from validated energy demands of the base buildings. Both passive and active façade provided a reduction in primary energy consumption for space conditioning, of about 17% and 28%, respectively, and in the total primary energy consumption, of about 4% and 9%, respectively. The best solution, with the maximum energy saving in total primary energy consumption, approximately 20%, is achieved with the active façade and with 80% of the outer layer of the double-skin façade covered by PV modules. The results show that transparent double-skin facades are promising and effective for energy retrofit.
- University of Sannio Italy
- University of Sannio Italy
- University Federico II of Naples Italy
Building energy performance; energy retrofit; double-skin façade; airflow network; BIPV photovoltaic, double-skin façade, Building energy performance, BIPV photovoltaic, airflow network, energy retrofit
Building energy performance; energy retrofit; double-skin façade; airflow network; BIPV photovoltaic, double-skin façade, Building energy performance, BIPV photovoltaic, airflow network, energy retrofit
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
