Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kinetic, thermodynamic and physical-chemical study of the removal of copper from cachaça using coconut fibers

Authors: Barbosa, Richard Bispo; Magriotis, Zuy Maria; Gândara, Ana Paula Andrade; Santiago, Wilder Douglas; Alvarenga, Gabriela Fontes; Brandão, Rafaela Magalhães; Oliveira, Renan Elan da Silva; +3 Authors

Kinetic, thermodynamic and physical-chemical study of the removal of copper from cachaça using coconut fibers

Abstract

The use of coconut fiber as a copper adsorbent in cachaça was optimised, and changes in the chemical quality of the beverage were observed by analytical techniques. The influence of the adsorbent mass and copper concentration parameters was investigated using the Central Composite Design, and the optimum condition was obtained through the use of Response Surface Methodology. The equilibrium of the adsorption reaction was obtained within 120 min. The kinetic data were better adjusted for the Elovich model (Elovich and Zhabrova 1939) and the isotherm data for the Sips model (Sips 1948). The maximum adsorption capacity was 1.38 mg g-1. Slight changes in the physicochemical quality of the beverage were observed, including a decrease in volatile acidity and alcohol content. Copper levels in cachaça decreased from 8.57 mg L-1 to 4.97 mg L-1 after adsorption. Therefore, the use of biomass as a metal ion adsorbent in beverages can be successfully employed.

Country
Brazil
Keywords

Cocos, Hydrogen-Ion Concentration, Kinetics, Cachaça, Thermodynamics, Biomass, Adsorption, Copper, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average