
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete

handle: 11363/5938
Accumulation of waste tyres causes an environmental disaster because of the rapid rise in transport vehicle demand resulting from modern developments, Covid-19 and similar pandemics. Thus, recycling waste tyres in the form of aggregates as a sustainable construction material can be a solution to reduce the environmental problems. Current research focuses on the impact resistance and mechanical properties of the crumb rubber self-compacting alkali-activated concrete reinforced with 1% steel fibres (SFs) where fine and coarse crumb rubbers (CR) are partially replaced with 10% and 15% replacement ratios. The compressive, flexural, splitting tensile strengths and modulus of elasticity were investigated; impact resistance was found using a drop hammer impact test. The incorporation of CR reduced the mechanical properties, and the reduction was found more with increased rubber contents, whereas the incorporation of SF compensated for the strength loss. The impact performance was enhanced with the CR and SF incorporations. The 15% CR incorporation improved the impact energy up to three times, whereas both 1% SF and 15% CR incorporations significantly enhanced the impact energy up to 30 times. Similar mechanical strengths were obtained for the different sizes of CR. However, impact performance was significantly influenced by the sizes of CR.
- Istanbul University Turkey
- Istanbul Gelisim University Press Turkey
- Istanbul Gelisim University Press Turkey
- Gaziantep University Turkey
- Gaziantep University Turkey
drop-weight test, Impact energy, impact performance, crumb rubber, impact resistance, self-compacting alkali-activated concrete
drop-weight test, Impact energy, impact performance, crumb rubber, impact resistance, self-compacting alkali-activated concrete
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
