
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Energy and cost management of different mixing ratios and morphologies on mono and hybrid nanofluids in collector technologies

Le modèle tridimensionnel (3D) du capteur solaire à plaque plate (FPSC) a été utilisé pour évaluer numériquement les estimations énergétiques et économiques. Un flux laminaire avec 500 ≤ Re ≤ 1900, une température d'entrée de 293 K et un flux solaire de 1000 W/m2 ont été supposés les conditions de fonctionnement. Deux nanofluides mono, CuO-DW et Cu-DW, ont été testés avec différentes formes (sphériques, cylindriques, plaquettaires et lames) et différentes fractions volumiques. De plus, des nanocomposites hybrides de CuO@Cu/DW avec différentes formes (sphériques, cylindriques, plaquettaires et lames), différents rapports de mélange (60 % + 40 %, 50 % + 50 % et 40 % + 60 %) et différentes fractions volumiques (1 % en volume, 2 % en volume, 3 % en volume et 4 % en volume) ont été comparés avec des nanofluides mono. À 1 % en volume et Re = 1900, les plaquettes CuO ont démontré la perte de charge la plus élevée (33,312 Pa). Les plaquettes CuO ont obtenu l'amélioration thermique la plus élevée avec (8,761 %) à 1 % en volume et Re = 1900. Les plaquettes CuO ont réduit la taille du capteur solaire de 25,60 %. Pendant ce temps, CuO@Cu-Spherical (40:60) avait besoin d'une taille de collecteur plus grande avec 16,69 % à 4 % en volume et Re = 1900. Les plaquettes CuO avec 967,61, CuO – Cylindrique avec 976,76, les plaquettes Cu avec 983,84 et Cu-Cylindrique avec 992,92 ont présenté le coût total le plus bas. Pendant ce temps, le coût total des plaquettes CuO – Cu – avec 60:40, 50:50 et 40:60 était de 994,82, 996,18 et 997,70, respectivement.
Se utilizó el modelo tridimensional (3D) de colector solar de placa plana (FPSC) para evaluar numéricamente las estimaciones energéticas y económicas. Se asumió un flujo laminar con 500 ≤ Re ≤ 1900, una temperatura de entrada de 293 K y un flujo solar de 1000 W/m2 en las condiciones de operación. Se probaron dos mononanofluidos, CuO-DW y Cu-DW, con diferentes formas (esférica, cilíndrica, plaquetas y cuchillas) y diferentes fracciones de volumen. Además, se compararon nanocompuestos híbridos de CuO@Cu/DW con diferentes formas (esféricas, cilíndricas, plaquetas y cuchillas), diferentes proporciones de mezcla (60% + 40%, 50% + 50% y 40% + 60%) y diferentes fracciones de volumen (1% en volumen, 2% en volumen, 3% en volumen y 4% en volumen) con mononanofluidos. Al 1% en volumen y Re = 1900, las plaquetas de CuO demostraron la mayor caída de presión (33,312 Pa). Las plaquetas de CuO lograron la mayor mejora térmica con (8.761%) al 1% en volumen y Re = 1900. CuO-Platelets redujo el tamaño del colector solar en un 25,60%. Mientras tanto, CuO@Cu-Spherical (40:60) necesitaba un tamaño de colector más grande con 16.69% a 4 vol.% y Re = 1900. Las Plaquetas de CuO con 967.61, Cilíndricas de CuO con 976.76, Plaquetas de Cu con 983.84 y Cilíndricas de Cu con 992.92 presentaron el menor costo total. Por su parte, el coste total de CuO – Cu – Plaquetas con 60:40, 50:50 y 40:60 fue de 994,82, 996,18 y 997,70, respectivamente.
The flat-plate solar collector (FPSC) three-dimensional (3D) model was used to numerically evaluate the energy and economic estimates. A laminar flow with 500 ≤ Re ≤ 1900, an inlet temperature of 293 K, and a solar flux of 1000 W/m2 were assumed the operating conditions. Two mono nanofluids, CuO-DW and Cu-DW, were tested with different shapes (Spherical, Cylindrical, Platelets, and Blades) and different volume fractions. Additionally, hybrid nanocomposites from CuO@Cu/DW with different shapes (Spherical, Cylindrical, Platelets and Blades), different mixing ratios (60% + 40%, 50% + 50% and 40% + 60%) and different volume fractions (1 volume%, 2 volume%, 3 volume% and 4 volume%) were compared with mono nanofluids. At 1 volume% and Re = 1900, CuO-Platelets demonstrated the highest pressure drop (33.312 Pa). CuO-Platelets achieved the higher thermal enhancement with (8.761%) at 1 vol.% and Re = 1900. CuO-Platelets reduced the size of the solar collector by 25.60%. Meanwhile, CuO@Cu-Spherical (40:60) needed a larger collector size with 16.69% at 4 vol.% and Re = 1900. CuO-Platelets with 967.61, CuO – Cylindrical with 976.76, Cu Platelets with 983.84, and Cu-Cylindrical with 992.92 presented the lowest total cost. Meanwhile, the total cost of CuO – Cu – Platelets with 60:40, 50:50, and 40:60 was 994.82, 996.18, and 997.70, respectively.
تم استخدام نموذج المجمع الشمسي المسطح (FPSC) ثلاثي الأبعاد (3D) لتقييم تقديرات الطاقة والتقديرات الاقتصادية رقميًا. تم افتراض تدفق رقائقي مع 500 ≤ Re ≤ 1900، ودرجة حرارة مدخل 293 كلفن، وتدفق شمسي قدره 1000 واط/م 2 في ظروف التشغيل. تم اختبار اثنين من السوائل أحادية النانو، CuO - DW و Cu - DW، بأشكال مختلفة (كروية، أسطوانية، صفائح دموية، وشفرات) وكسور مختلفة الحجم. بالإضافة إلى ذلك، تمت مقارنة المركبات النانوية الهجينة من CuO@Cu/DW بأشكال مختلفة (كروية، أسطوانية، صفائح وشفرات)، ونسب خلط مختلفة (60 ٪ + 40 ٪، 50 ٪ + 50 ٪ و 40 ٪ + 60 ٪) وكسور حجم مختلفة (1 حجم٪، 2 حجم٪، 3 حجم٪ و 4 حجم٪) مع السوائل النانوية الأحادية. عند 1 حجم٪ و Re = 1900، أظهرت صفائح CuO أعلى انخفاض في الضغط (33.312 باسكال). حققت صفائح CuO - Platelets تعزيزًا حراريًا أعلى بنسبة (8.761 ٪) عند 1 حجم٪ و Re = 1900. خفضت صفائح CuO - Platelets حجم المجمع الشمسي بنسبة 25.60 ٪. وفي الوقت نفسه، احتاج CuO@ Cu - Spherical (40:60) إلى حجم جامع أكبر بنسبة 16.69 ٪ عند 4 مجلدات٪ و Re = 1900. قدم CuO - Platelets مع 967.61، CuO – Cylindrical مع 976.76، Cu Platelets مع 983.84، و Cu - Cylindrical مع 992.92 أقل تكلفة إجمالية. وفي الوقت نفسه، كانت التكلفة الإجمالية للصفائح الدموية CuO – Cu – مع 60:40 و 50:50 و 40:60 هي 994.82 و 996.18 و 997.70 على التوالي.
- Universiti Teknologi MARA Malaysia
- King Fahd University of Petroleum and Minerals Saudi Arabia
- University of Benghazi Libyan Arab Jamahiriya
- Al-Mustaqbal University Iraq
- Curtin University Australia
Heat Transfer Enhancement in Nanofluids, Composite material, Volume (thermodynamics), Biomedical Engineering, mono-nanofluids, Nanofluid Cooling, FOS: Mechanical engineering, TJ Mechanical engineering and machinery, Energy Engineering, Nanofluid, FOS: Medical engineering, solar collector, Laminar flow, Nanofluids, Analytical Chemistry (journal), Engineering, Nanoparticle, cost analysis, Nanotechnology, Pressure drop, Solar Thermal Collectors, hybrid-nanofluids, FOS: Nanotechnology, Chromatography, Energy, Renewable Energy, Sustainability and the Environment, Physics, Inlet, Engineering (General). Civil engineering (General), Materials science, Mechanical engineering, Energiteknik, Photovoltaic Efficiency, Chemistry, Atmospheric Water Harvesting, Physical Sciences, Solar Thermal Energy Technologies, Solar-Powered Water Desalination Technologies, Thermodynamics, thermal performance, TA1-2040
Heat Transfer Enhancement in Nanofluids, Composite material, Volume (thermodynamics), Biomedical Engineering, mono-nanofluids, Nanofluid Cooling, FOS: Mechanical engineering, TJ Mechanical engineering and machinery, Energy Engineering, Nanofluid, FOS: Medical engineering, solar collector, Laminar flow, Nanofluids, Analytical Chemistry (journal), Engineering, Nanoparticle, cost analysis, Nanotechnology, Pressure drop, Solar Thermal Collectors, hybrid-nanofluids, FOS: Nanotechnology, Chromatography, Energy, Renewable Energy, Sustainability and the Environment, Physics, Inlet, Engineering (General). Civil engineering (General), Materials science, Mechanical engineering, Energiteknik, Photovoltaic Efficiency, Chemistry, Atmospheric Water Harvesting, Physical Sciences, Solar Thermal Energy Technologies, Solar-Powered Water Desalination Technologies, Thermodynamics, thermal performance, TA1-2040
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
