
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

doi: 10.1086/598487
pmid: 19371168
Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for empirically testing model predictions by field manipulations. Here, we present a model that describes spatial interactions between vegetation, nutrients, hydrology, and peat. We used this model to study pattern formation as driven by three different mechanisms: peat accumulation, water ponding, and nutrient accumulation. By on-and-off switching of each mechanism, we created a full-factorial design to see how these mechanisms affected surface patterning (pattern of vegetation and peat height) and underlying patterns in nutrients and hydrology. Results revealed that different combinations of structuring mechanisms lead to similar types of peatland surface patterning but contrasting underlying patterns in nutrients and hydrology. These contrasting underlying patterns suggest that the presence or absence of the structuring mechanisms can be identified by relatively simple short-term field measurements of nutrients and hydrology, meaning that longer-term field manipulations can be circumvented. Therefore, this study provides promising avenues for future empirical studies on peatland patterning.
- Wageningen University & Research Netherlands
- Utrecht University Netherlands
simulation-model, boreal peatlands, water, evapotranspiration, Fresh Water, arid ecosystems, raised bog, Models, Biological, scale, Soil, vegetation, Computer Simulation, Biomass, spatial patterns, mire ecosystems, hummock-hollow, positive feedback, landscape, Plants, self-organization, Wetlands, scale-dependent feedback, hydraulic conductivity
simulation-model, boreal peatlands, water, evapotranspiration, Fresh Water, arid ecosystems, raised bog, Models, Biological, scale, Soil, vegetation, Computer Simulation, Biomass, spatial patterns, mire ecosystems, hummock-hollow, positive feedback, landscape, Plants, self-organization, Wetlands, scale-dependent feedback, hydraulic conductivity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).124 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
