Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Physics C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Physics Condensed Matter
Article . 2014 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations

Authors: T. Tadano; Yoshihiro Gohda; S. Tsuneyuki;

Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations

Abstract

A systematic method to calculate anharmonic force constants of crystals is presented. The method employs the direct-method approach, where anharmonic force constants are extracted from the trajectory of first-principles molecular dynamics simulations at high temperature. The method is applied to Si where accurate cubic and quartic force constants are obtained. We observe that higher-order correction is crucial to obtain accurate force constants from the trajectory with large atomic displacements. The calculated harmonic and anharmonic force constants are, then, combined with the Boltzmann transport equation (BTE) and non-equilibrium molecular dynamics (NEMD) methods in calculating the thermal conductivity. The BTE approach successfully predicts the lattice thermal conductivity of bulk Si, whereas NEMD shows considerable underestimates. To evaluate the linear extrapolation method employed in NEMD to estimate bulk values, we analyze the size dependence in NEMD based on BTE calculations. We observe strong nonlinearity in the size dependence of NEMD in Si, which can be ascribed to acoustic phonons having long mean-free-paths and carrying considerable heat. Subsequently, we also apply the whole method to a thermoelectric material Mg2Si and demonstrate the reliability of the NEMD method for systems with low thermal conductivities.

Country
Japan
Keywords

Hot Temperature, Thermal Conductivity, Molecular Dynamics Simulation, 540, 530, Energy Transfer, Models, Chemical, Magnesium Silicates, Thermodynamics, Computer Simulation, Stress, Mechanical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    440
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
440
Top 0.1%
Top 1%
Top 1%
Related to Research communities
Energy Research