
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers

pmid: 28504642
Based on international reference dosimetry protocols for light-ion beams, a correction factor (k s) has to be applied to the response of a plane-parallel ionisation chamber, to account for recombination of negative and positive charges in its air cavity before these charges can be collected on the electrodes. In this work, k s for IBA PPC40 Roos-type chambers is investigated in four scanned light-ion beams (proton, helium, carbon and oxygen). To take into account the high dose-rates used with scanned beams and LET-values, experimental results are compared to a model combining two theories. One theory, developed by Jaffé, describes the variation of k s with the ionization density within the ion track (initial recombination) and the other theory, developed by Boag, describes the variation of k s with the dose rate (volume recombination). Excellent agreement is found between experimental and theoretical k s-values. All results confirm that k s cannot be neglected. The solution to minimise k s is to use the ionisation chamber at high voltage. However, one must be aware that charge multiplication may complicate the interpretation of the measurement. For the chamber tested, it was found that a voltage of 300 V can be used without further complication. As the initial recombination has a logarithmic variation as a function of 1/V, the two-voltage method is not applicable to these scanned beams.
- Université Catholique de Louvain Belgium
- National Physical Laboratory United Kingdom
- Laboratori Nazionali del Sud Italy
- Centre Antoine Lacassagne France
- National Physical Laboratory United Kingdom
Linear Energy Transfer, Radiation Dosage, Radiometry
Linear Energy Transfer, Radiation Dosage, Radiometry
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
