Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physics in Medicine ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physics in Medicine and Biology
Article . 2017 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
GSI Repository
Article . 2017
Data sources: GSI Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxygen beams for therapy: advanced biological treatment planning and experimental verification

Authors: Sokol O.; Scifoni E.; Tinganelli W.; Kraft-Weyrather W.; Wiedemann J.; Maier A.; Boscolo D.; +4 Authors

Oxygen beams for therapy: advanced biological treatment planning and experimental verification

Abstract

Nowadays there is a rising interest towards exploiting new therapeutical beams beyond carbon ions and protons. In particular, [Formula: see text]O ions are being widely discussed due to their increased LET distribution. In this contribution, we report on the first experimental verification of biologically optimized treatment plans, accounting for different biological effects, generated with the TRiP98 planning system with [Formula: see text]O beams, performed at HIT and GSI. This implies the measurements of 3D profiles of absorbed dose as well as several biological measurements. The latter includes the measurements of relative biological effectiveness along the range of linear energy transfer values from ≈20 up to ≈750 keV μ [Formula: see text], oxygen enhancement ratio values and the verification of the kill-painting approach, to overcome hypoxia, with a phantom imitating an unevenly oxygenated target. With the present implementation, our treatment planning system is able to perform a comparative analysis of different ions, according to any given condition of the target. For the particular cases of low target oxygenation, [Formula: see text]O ions demonstrate a higher peak-to-entrance dose ratio for the same cell killing in the target region compared to [Formula: see text]C ions. Based on this phenomenon, we performed a short computational analysis to reveal the potential range of treatment plans, where [Formula: see text]O can benefit over lighter modalities. It emerges that for more hypoxic target regions (partial oxygen pressure of ≈0.15% or lower) and relatively low doses (≈4 Gy or lower) the choice of [Formula: see text]O over [Formula: see text]C or [Formula: see text]He may be justified.

Countries
Italy, Germany, Germany
Keywords

info:eu-repo/classification/ddc/570, biological treatment planning; cell survival; hypoxia; ion beam radiotherapy; oxygen enhancement ratio (OER); relative biological effectiveness (RBE), ion beam radiotherapy, hypoxia, Phantoms, Imaging, Radiotherapy Planning, Computer-Assisted, cell survival, relative biological effectiveness (RBE), Oxygen, biological treatment planning; cell survival; hypoxia; ion beam radiotherapy; oxygen enhancement ratio (OER); relative biological effectiveness (RBE); Linear Energy Transfer; Oxygen; Phantoms, Imaging; Radiotherapy Planning, Computer-Assisted; Relative Biological Effectiveness, biological treatment planning, Linear Energy Transfer, oxygen enhancement ratio (OER), Relative Biological Effectiveness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 10%