
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Smart bricks for strain sensing and crack detection in masonry structures

handle: 11391/1420420 , 20.500.12876/13785
The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick's mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.
- Iowa State University United States
- University of Perugia Italy
- Iowa State University United States
690, Civil and Environmental Engineering, Structural Engineering, Structural Materials, structural health monitoring, CNDE, self-sensing structural materials, 624, VLSI and Circuits, damage detection, 620, Embedded and Hardware Systems, smart brick, smart materials, smart brick, structural health monitoring, masonry structures, self-sensing structural materials, damage detection, smart materials, masonry structures
690, Civil and Environmental Engineering, Structural Engineering, Structural Materials, structural health monitoring, CNDE, self-sensing structural materials, 624, VLSI and Circuits, damage detection, 620, Embedded and Hardware Systems, smart brick, smart materials, smart brick, structural health monitoring, masonry structures, self-sensing structural materials, damage detection, smart materials, masonry structures
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
