Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical investigation on thermoelectric generators in an exhaust automotive line with aluminium foam

Authors: Buonomo B.; Di Pasqua A.; Manca O.; Nardini S.;

Numerical investigation on thermoelectric generators in an exhaust automotive line with aluminium foam

Abstract

Abstract In the present paper a two-dimensional convective heat transfer problem in a partially filled channel with metal foam is numerically solved in steady state regime. An external thermoelectric generators (TEG) component is placed on the top surface of the channel. The numerical analyses are accomplished assuming the local thermal equilibrium (LTE) model to simulate the presence of the aluminum foam. The working fluid is exhaust gas with properties equal to the air for fixed temperature of the upper surface of the thermo-electric generator (TEG). The thermophysical properties are assumed temperature independent and the TEG component is considered as a solid with an internal energy generation. The Ansys-Fluent code is applied in order to resolve the governing equations for gas, porous media and TEG. Several mass flow rates of exhaust gas on the inlet section of the channel are considered. Different thicknesses of aluminum foam are assumed into the duct. The foam is characterized by different porosity equal to 0.90, 0.95, 0.97. Moreover, the number of pores per inch also changes and assumes the following values of 5, 20, 40. Results are showed in terms of temperature distributions, pressure drop, thermoelectric efficiency for different exhaust gas flow rates and metal foam characteristics and thicknesses. The results highlight that the use of metal foams significantly increases the heat transfer between the surface of exhaust gas tube and hot gas. Consequently, the effectiveness improves, and it increases between three-ten times with respect to the one for tube without metal foams. It is shown that the pore density does not affect the effectiveness.

Country
Italy
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold