Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS Cnrarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non linear model predictive control strategy for the energy management of a P4 parallel hybrid electric vehicle

Authors: Teodosio, Luigi; Bellis, Vincenzo De; Landolfi, Enrico; Marino, Matteo; Giordano, Giuseppe; Malfi, Enrica; Piras, Marco;

Non linear model predictive control strategy for the energy management of a P4 parallel hybrid electric vehicle

Abstract

Abstract In this paper, the energy management strategies (EMS) as main fuel saving approaches are studied for a P4 parallel hybrid electric vehicle (HEV). The multiple power sources of the analysed HEV (one thermal engine and two electric motors) and the different vehicle driving conditions increase the complexity in designing an optimal EMS. To efficiently solve the fuel minimization problem, a non linear Model Predictive Control (NL-MPC) is proposed as energy optimization strategy of the examined HEV. First, a vehicle simulation model is developed in Matlab/Simulink environment. A NL-MPC-controller is designed, implemented into the adopted code and coupled to the vehicle model. The effectiveness of developed NL-MPC approach is evaluated in two different driving cycles, also including various initial battery State of Charge. A comparison with a well-recognized real-time EMS strategy, namely heuristic/rule based (RB) approach, is performed over WLTC and a Real Driving Cycle (RDC). The numerical outcomes demonstrate the capability of NL-MPC controller at significantly improving the fuel consumption with respect to the RB strategy (maximum advantage of 9% and 15% over WLTC and RDC), thus providing an excellent and robust method in the HEV powertrain control with satisfactory performance.

Country
Italy
Keywords

Non linear MPC, vehicle model; Non linear MPC; HEV; driving cycles; fuel consumption., driving cycles, vehicle model, fuel consumption, HEV

Powered by OpenAIRE graph
Found an issue? Give us feedback