Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Physics :...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy comparison analysis between direct and indirect dry saturated steam generation, thermally powered by EFPCs’ solar fields

Authors: Alessandro Levrano; Alessandro Vitaliano Anacreonte; Eliana Gaudino; Roberto Vitobello; S Sparano; Roberto Russo; Marilena Musto;

Energy comparison analysis between direct and indirect dry saturated steam generation, thermally powered by EFPCs’ solar fields

Abstract

Abstract Steam is a key energy vector in the industrial sector and each application requires it at a specific pressure and temperature. In this paper the production of low pressure dry saturated steam for industrial use through high-vacuum flat plate solar collectors (HVFPCs) is discussed. This technology can produce steam from solar energy, hybridizing it with existing fossil powered steam generators to obtain significant energy savings and reduce CO 2 emissions. An energy comparison using the 0-D TRNSYS® software between numerical results of different plant configurations is made, which differ in the type of dry saturated steam production device. These devices are necessary as it is not possible to produce steam directly inside collectors. Two possible steam generation methods were analysed: direct steam production, using a Flash vessel, and indirect steam production, using a Kettle reboiler. Finally, each configuration was simulated by imposing a solar field ΔT of 10 °C and 20 °C. Dynamic results show that flash vessel configurations are generally the most efficient, with the same operating parameters, compared to the configurations with Kettle reboiler. Furthermore, configurations with certain ΔT, such as to determine lower operational solar field temperatures, lead to the best results due to the higher HVFPCs’ efficiency.

Country
Italy
Keywords

steam generation, thermal energy, solar field, solar thermal energy, renewable energy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold