
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design and thermal test of high-vacuum insulator for heat delivery pipes

handle: 11588/952651 , 20.500.14243/540182
Abstract Thermal piping insulation of implants is crucial for heat delivery, production, collection, or storage at high temperature values. It is currently obtained by enveloping low thermal conductivity materials such as rockwool, fiberglass, polyurethane, polystyrene, and aerogel. However, better performances can be reached by adopting vacuum technology. In this case, conductive losses are annihilated, and the radiative heat transfer mechanism represents the only loss mechanism. Here, we compare a high vacuum-based novel solution and the traditional insulation for heat delivery applications. We propose a high vacuum- based solution consisting of an evacuated gap that surrounds the hot pipe coated by a thin aluminium foil. Experimental results using this novel solution show a fivefold reduction of the thermal radiation losses compared to the traditional solutions when in the temperature range between 100 °C and 250 °C.
vacuum tube, thermal conductivty, high vacuum insulation
vacuum tube, thermal conductivty, high vacuum insulation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
