Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Concentrated Solar Power Plant using air blended with nanoparticles as working fluid

Authors: Di Bartolomeo M.; Coletta A.; Deriszadeh A.; Di Battista D.; Carapellucci R.; Cipollone R.;

Concentrated Solar Power Plant using air blended with nanoparticles as working fluid

Abstract

Abstract Adopting efficient power plants based on renewable energy sources is extremely important to face the challenges of global warming. Concentrated Solar Power Plant (CSP) is a technology option that can achieve the decarbonization target of the electricity sector in large power plants and simultaneously meet the growing demand for electricity. In this study, a CSP plant using air as heat transfer fluid, whose transformations realize a Discrete Ericsson Cycle (DEC), was referenced. Solar fields are based on parabolic trough collectors. The DEC consists of a series of inter-cooled compressions and inter-heated expansions (four and two, respectively, in this paper), whose net result is a useful work. In this paper, a mixture of air and Cr2O3 nanoparticles at different particle concentration has been considered as working fluid to enhance the performances of the compression and expansion transformations in a DEC-based plant. The presence of particles cools the air during compression and heat the air during expansion, approaching isothermal processes. A sensitivity analysis referred to the particle concentration has been discussed and the power and the efficiency of the plant have been discussed outlining benefits and drawbacks. Nanoparticle concentration less that 0,05% in volume (10 % in mass) produce a power and efficiency output increase close to 3 % without any sensible constraint. At higher concentrations, more significant variations are achieved with a 15 % power output increase for a mass concentration of nanoparticles of 50%. Such mass concentration corresponds to just 0.05 % in volume, allowing a potential operativity of the turbomachines. In this condition, the overall CSP efficiency improve by 1.5 percentage points.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold