Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint

Authors: Ioannis Pappis; Vignesh Sridharan; Mark Howells; Hrvoje Medarac; Ioannis Kougias; Rocío González Sánchez; Abhishek Shivakumar; +1 Authors

The effects of climate change mitigation strategies on the energy system of Africa and its associated water footprint

Abstract

Abstract Africa’s economic and population growth prospects are likely to increase energy and water demands. This quantitative study shows that energy decarbonisation pathways reduce water withdrawals (WWs) and water consumption (WC) relative to the baseline scenario. However, the more aggressive decarbonisation pathway (1.5 °C) leads to higher overall WWs than the 2.0 °C scenario but lower WC levels by 2065. By 2065, investments in low-carbon energy infrastructure increase annual WWs from 1% (52 bcm) in the 2.0 °C to 2% (85 bcm) in the 1.5 °C scenarios of total renewable water resources in Africa compared to 3% (159 bcm) in the baseline scenario with lower final energy demands in the mitigation scenarios. WC decreases from 1.2 bcm in the 2.0 °C to 1 bcm in the 1.5 °C scenario, compared to 2.2 bcm in the baseline scenario by 2065, due to the lower water intensity of the low-carbon energy systems. To meet the 1.5 °C pathway, the energy sector requires a higher WW than the 2.0 °C scenario, both in total and per unit of final energy. Overall, these findings demonstrate the crucial role of integrated water-energy planning, and the need for joined-up carbon policy and water resources management for the continent to achieve climate-compatible growth.

Keywords

Science, QC1-999, Environmental technology. Sanitary engineering, integrated energy planning, GE1-350, TD1-1066, water resources management, Physics, energy modelling, Q, Environmental sciences, Africa, OSeMOSYS, energy policy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold