Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research Letters
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Equity implications of electric vehicles: A systematic review on the spatial distribution of emissions, air pollution and health impacts

Authors: Anjali Sharma; Jinyu Shiwang; Anna Lee; Wei Peng;

Equity implications of electric vehicles: A systematic review on the spatial distribution of emissions, air pollution and health impacts

Abstract

Abstract Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts.

Keywords

climate mitigation, Science, Physics, QC1-999, air pollution, Q, Environmental technology. Sanitary engineering, Environmental sciences, just transition, GE1-350, distributional impacts, health impacts, TD1-1066, electric vehicles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
gold