Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IOP Conference Serie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IOP Conference Series : Earth and Environmental Science
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Performance analysis of a two-stage gravitational water vortex turbine

Authors: Taqi Ahmad Cheema; Abdul Samad Saleem; Rizwan Ullah;

Performance analysis of a two-stage gravitational water vortex turbine

Abstract

In the present study the performance of two-stage gravitational water vortex turbine (GWVT) assembled in a conical basin with Savonius blade profile configuration has been investigated at different flow rate and vortex elevation. Two-stage GWVT with conical basin, not only increases the performance parameters with increase in flow parameters, but the lower stages also feed additional impact to the stage located above it because of forced vortex generation in the vicinity of top stage. Moreover, maximum hydraulic head drop near the orifice is the main contributor in the power generation of the bottom stage, by giving rise to strong tangential velocity. A stage starts power production as soon as the parabolic surface of the vortex approaches the corners of the blades even in the absence of a significant water-blade interaction. The developed analytical model qualitatively predicts the performance of the turbine minutely leading the experimental results quantitatively.

Powered by OpenAIRE graph
Found an issue? Give us feedback