
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Liquid metals for solar power systems

Liquid metals for solar power systems
The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almer a (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.
- Karlsruhe Institute of Technology Germany
- German Aerospace Center Germany
- Energy Technologies Institute United Kingdom
- Energy Technologies Institute United Kingdom
- University of Hannover Germany
Technology, ddc:600, System simulations, Spray fires, Sodium, 600, Liquids, Liquid sodium, Solar energy, Metals, High-efficiency, Heat transfer, info:eu-repo/classification/ddc/600, Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik, Helmholtz, Concentrated solar power, Liquid metals, Konferenzschrift, Dewey Decimal Classification::300 | Sozialwissenschaften, Soziologie, Anthropologie::330 | Wirtschaft::333 | Boden- und Energiewirtschaft::333,7 | Natürliche Ressourcen, Energie und Umwelt
Technology, ddc:600, System simulations, Spray fires, Sodium, 600, Liquids, Liquid sodium, Solar energy, Metals, High-efficiency, Heat transfer, info:eu-repo/classification/ddc/600, Dewey Decimal Classification::500 | Naturwissenschaften::530 | Physik, Helmholtz, Concentrated solar power, Liquid metals, Konferenzschrift, Dewey Decimal Classification::300 | Sozialwissenschaften, Soziologie, Anthropologie::330 | Wirtschaft::333 | Boden- und Energiewirtschaft::333,7 | Natürliche Ressourcen, Energie und Umwelt
1 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
