Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universitat Politècn...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Article . 2021 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Reversible fuel electrode supported solid oxide cells fabricated by aqueous multilayered tape casting

Authors: L Bernadet; M Morales; X G Capdevila; F Ramos; M C Monterde; J A Calero; A Morata; +2 Authors

Reversible fuel electrode supported solid oxide cells fabricated by aqueous multilayered tape casting

Abstract

Abstract Fuel electrode supported solid oxide cells (SOCs) have been developed on an industrial scale using the aqueous tape-casting technique. The NiO–yttria-stabilized zirconia Y2O3–ZrO2 (YSZ) fuel electrode and YSZ electrolyte have been manufactured by multilayer co-laminated tape casting. Details of the tape-casting slurry formulations are described and discussed. Two types of cells were fabricated with different microstructures of the NiO–YSZ support discussed. Good electrochemical performance and stability in SOFC mode at 750 °C and 0.7 V for both button cells reaching around >0.75 W cm−2 and with no measurable degradation after >700 h were observed. The selected cell was scaled up to large-area cells (36 cm2 of the active area) and electrochemically tested at 750 °C in a single repetition unit (SRU) in SOFC (Solid Oxide Fuel Cell), SOEC (Solid Oxide Electrolysis Cell) and co-SOEC (Solid Oxide co-Electrolysis Cell) mode, and in a short-stack of two SRUs in SOFC mode. A current up to 17 A was obtained at 1.4 V (0.7 V cell−1) with the short-stack configuration in SOFC mode, corresponding to ∼0.5 A cm−2 and 24 W. The performances of the aqueous-based SOC cells can be considered highly remarkable, thus supporting the success in scaling the fabrication of SOC stacks using more environmentally friendly processes than conventional ones.

Country
Spain
Keywords

Piles de combustible d'òxid sòlid, :Energies [Àrees temàtiques de la UPC], Solid oxide electrolyser cells, SOC scale up, Hidrogen, Solid oxide fuel cells, Degradation, Gas, Àrees temàtiques de la UPC::Energies, Power to gas, tape casting, Hydrogen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 50
    download downloads 109
  • 50
    views
    109
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Top 10%
50
109
Green
gold