Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigating spatial macroscopic metastability of perovskite solar cells with voltage dependent photoluminescence imaging

Authors: George Koutsourakis; Carys Worsley; Michael Spence; James C Blakesley; Trystan M Watson; Matt Carnie; Fernando A Castro;

Investigating spatial macroscopic metastability of perovskite solar cells with voltage dependent photoluminescence imaging

Abstract

Abstract Metastability is a characteristic feature of perovskite solar cell (PSC) devices that affects power rating measurements and general electrical behaviour. In this work the metastability of different types of PSC devices is investigated through current–voltage (I–V) testing and voltage dependent photoluminescence (PL-V) imaging. We show that advanced I–V parameter acquisition methods need to be applied for accurate PSC performance evaluation, and that misleading results can be obtained when using simple fast I–V curves, which can lead to incorrect estimation of cell efficiency. The method, as applied in this work, can also distinguish between metastability and degradation, which is a crucial step towards reporting stabilised efficiencies of PSC devices. PL-V is then used to investigate temporal and spatial PL response at different voltage steps. In addition to the impact on current response, metastability effects are clearly observed in the spatial PL response of different types of PSCs. The results imply that a high density of local defects and non-uniformities leads to increased lateral metastability visible in PL-V measurements, which is directly linked to electrical metastability. This work indicates that existing quantitative PL imaging methods and point-based PL measurements of PSC devices may need to be revisited, as assumptions such as the absence of lateral currents or uniform voltage bias across a cell area may not be valid.

Country
United Kingdom
Related Organizations
Keywords

TK1001-1841, TJ807-830, 530, perovskite solar cells, Renewable energy sources, 510, metastability, photoluminescence imaging, Production of electric energy or power. Powerplants. Central stations, measurements

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Top 10%
Average
Average
Green
gold