Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JPhys Energy
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Toward zero-excess lithium sulfur batteries: a systematic cell parameter study

Authors: Joshua H Cruddos; James B Robinson; Paul R Shearing; Alexander J E Rettie;

Toward zero-excess lithium sulfur batteries: a systematic cell parameter study

Abstract

Abstract Zero-excess lithium (ZEL) or ‘anode-free’ batteries aim to minimize negative electrode material and address the challenges associated with handling thin lithium metal foils during fabrication. To date, most studies in the field of ZEL cells have primarily focused on lithium-ion chemistry, with considerably fewer systematic investigations into ZEL-sulfur (ZELiS) cell fabrication and optimization. Here we develop a ZELiS battery, comprising a Li2S-based composite positive electrode on carbon paper paired with a Ni foil current collector (CC) and evaluate the effects of various CC materials, electrolyte volume to Li2S mass ratio and C-rate. The developed cells reproducibly achieve an average Coulombic efficiency of 99% from cycles 2 to 200, and a final capacity of 272 mAh g−1 Li2S at a C/10 rate. Furthermore, we employ x-ray computed tomography to elucidate the morphological changes and degradation processes occurring within the positive electrode composite, revealing the irreversible loss of Li2S/S8 during cycling, which is exacerbated at high rates. These results should be useful in the development of commercially viable ZEL energy storage devices.

Keywords

Li sulfide, TK1001-1841, Production of electric energy or power. Powerplants. Central stations, Li sulfur, anode free, zero excess Li, TJ807-830, Renewable energy sources

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research