Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research: Climate
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Research: Climate
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lessons learnt from a real-time attribution and contextualisation trial in a National Meteorological and Hydrological Service

Authors: Pandora Hope; Jannatun Nahar; Gen C Tolhurst; Surendra P Rauniyar; Roseanna C McKay; Linjing Zhou; Michael R Grose; +6 Authors

Lessons learnt from a real-time attribution and contextualisation trial in a National Meteorological and Hydrological Service

Abstract

Abstract When a record hot month occurs, timely and credible attribution and contextualisation information can enhance public understanding and future preparedness. This is particularly effective if provided in real time by a National Meteorological and Hydrological Service (NMHS). Many NMHSs are working to integrate research-based attribution methods into their operational services. In this study, researchers and climate service staff collaborated to assess the feasibility of delivering such information swiftly and aligned with standard NMHS data and procedures. The record warm July (winter) temperatures of Tasmania, Australia in 2023 were chosen to illustrate the trial. Rapid results were available three days after the event. Approximately half of the unusual warmth was attributed to climate change, with the likelihood of breaking the previous record at least 17 times higher in the current climate compared to a stationary pre-industrial climate (14% vs. 0.4%). The warming trend became evident in the 1980s, and by 2060, average July temperatures in Tasmania match the record temperature of July 2023 under a high emissions scenario. However, average July minimum temperatures were not well modelled, necessitating the addition of a higher-resolution forecast-based attribution method. In subsequent analysis, almost all the forecast temperature anomaly, and reduced storm activity, was attributable to climate change. Statistical analysis revealed that a weak El Niño partly offset the unusual warmth. To expedite these additional approaches, information drawn from real-time forecasts could be used. Lessons learnt from this trial include technical improvements to align better with NMHS protocols including using consistent datasets and baselines, and refining and automating the method suite. Logistical and communication enhancements included training staff to run the suite, improving communication materials, and developing delivery channels. These learnings provide key considerations for NMHSs as they move towards providing timely and credible climate attribution and contextualisation information as part of their operational services.

Keywords

Environmental sciences, climate change, climate contextualisation, climate monitoring, Meteorology. Climatology, National Meteorological and Hydrological Service, Australia, GE1-350, QC851-999, extreme event attribution

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research