
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Recovery of chromium, copper and vanadium combined with electricity generation in two-chambered microbial fuel cells

pmid: 32756958
ABSTRACT Microbial fuel cells (MFCs) offer a promising solution towards recovery and treatment of heavy metal pollutants. In this study, two-chambered MFCs were employed for recovery of chromium, copper and vanadium (Cr (VI), Cu (II) and V (V)). One g/L concentrations of K2Cr2O7, CuCl2 and NaVO3 served as catholytes, while a mixed culture was used as anolyte. Cr (VI), Cu (II) and V (V) were reduced biologically into less toxic forms of Cr (III), Cu and V (IV) respectively. Power density and cathodic efficiency were calculated for each of the catholytes. Cr (VI) gave the maximum power density and cathodic efficiency due to its high redox potential. Current produced depended on the concentration of the catholyte. Over a period of time, biological reduction of catholytes lead to decrease in the metal concentrations, which demonstrated the application of MFC technology towards heavy metal treatment and recovery in a reasonably cost-effective manner.
Chromium, Industrial Microbiology, Bioelectric Energy Sources, Environmental Pollutants, Vanadium, Copper
Chromium, Industrial Microbiology, Bioelectric Energy Sources, Environmental Pollutants, Vanadium, Copper
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
