Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Computati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Computational Design and Engineering
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/1y...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/e7...
Other literature type . 2022
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of convection flow and entropy generation in a wavy cubical container with nanofluid and embedded cylinder

تقييم تدفق الحمل الحراري وتوليد الإنتروبيا في حاوية مكعبة متموجة مع سائل نانوي وأسطوانة مدمجة
Authors: Ammar I. Alsabery; Mohammad Hossein Yazdi; Evgeny Solomin; Hakan F. Öztop; Ishak Hashim;

Evaluation of convection flow and entropy generation in a wavy cubical container with nanofluid and embedded cylinder

Abstract

Abstract This work examines steady convection heat transfer and entropy generation in a wavy cubical container with Al2O3–water nanofluid and the solid cylinder. An isothermal embedded heater of finite width is located within the left vertical surface center of the container. All surfaces are insulated, except that the right wavy surface is kept cold, and the left wall is partially heated. The Boussinesq approximation is assumed, and three-dimensional simulations of governing equations have been applied to utilize the Galerkin weighted residual finite-element approach. Numerical results for the three-dimensional patterns of nanofluid flow, iso-temperature surfaces, and isentropic lines are given. The local Nusselt number adjacent to the left and interface surfaces within the container and solid cylinder and Bejan number have been examined for different values of the Rayleigh number, nanoparticle volume fraction, number of undulations and heater length, and cylinder radius. The results indicate that the optimal local heat transfer between the solid cylinder and container declines with the increased cylinder radius, which yields an imperfect nanofluid flow circulation.

Keywords

Heat Transfer Enhancement in Nanofluids, Biomedical Engineering, Cylinder, FOS: Mechanical engineering, Geometry, Nanofluid, FOS: Medical engineering, Mechanics, Bejan number, Reynolds number, Nanofluids, Engineering, Convective Heat Transfer, Heat transfer, FOS: Mathematics, Solar Air Heater Heat Transfer Analysis, Fluid Flow, Mechanical Engineering, Combined forced and natural convection, Physics, Microchannel Heat Transfer and Cooling Technology, Rayleigh number, Materials science, Turbulence, Natural convection, Physical Sciences, Thermodynamics, Nusselt number, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold