
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intraspecific variability of cadmium tolerance and accumulation, and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri

Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration.
- Oxford University Press (United Kingdom) United Kingdom
- Oxford University Press United Kingdom
- Oxford University Press United Kingdom
- Oxford University Press (United Kingdom) United Kingdom
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux France
Arabidopsis halleri, cadmium, Arabidopsis, Accumulation, Hydroponics, Species Specificity, Cell Wall, Stress, Physiological, Spectroscopy, Fourier Transform Infrared, [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment, Biomass, tolerance., [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, Principal Component Analysis, tolerance, Genetic Variation, FT-IR, cell wall, Hybridization, Genetic, Plant Shoots, Research Paper, Cadmium
Arabidopsis halleri, cadmium, Arabidopsis, Accumulation, Hydroponics, Species Specificity, Cell Wall, Stress, Physiological, Spectroscopy, Fourier Transform Infrared, [ SDU.ENVI ] Sciences of the Universe [physics]/Continental interfaces, environment, Biomass, tolerance., [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment, Principal Component Analysis, tolerance, Genetic Variation, FT-IR, cell wall, Hybridization, Genetic, Plant Shoots, Research Paper, Cadmium
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).111 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
