Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MODULATION OF ALCOHOL PREFERENCE BY NMDA ANTAGONISTS IN MALE RATS

Authors: David Deuceuninck; Philippe De Witte; Fabienne Lamblin;

MODULATION OF ALCOHOL PREFERENCE BY NMDA ANTAGONISTS IN MALE RATS

Abstract

Chronic alcoholization by alcohol inhalation was used to study the properties of magnesium, a non-competitive NMDA receptor antagonist, and CGP 39551, a competitive NMDA receptor antagonist, on behavioural dependence as estimated by the free-choice paradigm [alcohol 10% (v/v) vs. water], on the hypermotility after alcohol withdrawal, and finally on the cortical vascularization. The first experimental group received the drugs per os during the whole alcoholization period. Magnesium (20 mg/kg/day) decreased the alcohol dependence while CGP 39551 (5 and 10 mg/kg/day) increased, in a dose-dependent manner, the dependence to alcohol. A second group of animals received the same drugs at the same dosages, not simultaneously during chronic alcoholization, but immediately after alcoholization in one shot i.p. injection. In this case, rats receiving 5 mg/kg CGP 39551 never showed any dependence towards alcohol, while 10 mg/kg CGP 39551 or 20 mg/kg magnesium prolonged the number of days of alcohol dependence. These results thus indicate the close interaction between NMDA receptor function and dependence for alcohol. Magnesium had no effects on hypermotility, while CGP 39551-treated animals presented a decrease in the hypermotility observed after alcohol withdrawal. Neither drug affected the hypervascularization accompanying the chronic alcoholization.

Related Organizations
Keywords

Male, N-Methylaspartate, Behavior, Animal, Ethanol, Brain, Motor Activity, Choice Behavior, Receptors, N-Methyl-D-Aspartate, Rats, Substance Withdrawal Syndrome, Capillary Permeability, 2-Amino-5-phosphonovalerate, Animals, Magnesium, Rats, Wistar

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Average