Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radiation Protection Dosimetry
Article . 2017 . Peer-reviewed
License: OUP Terms of Use and Content Access Policy
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MICRODOSIMETRIC STUDY AT THE CNAO ACTIVE-SCANNING CARBON-ION BEAM

Authors: Colautti, P; Conte, V; Selva, A; Chiriotti, S; Pola, A; BORTOT, DAVIDE; Fazzi, A; +2 Authors

MICRODOSIMETRIC STUDY AT THE CNAO ACTIVE-SCANNING CARBON-ION BEAM

Abstract

The Italian National Centre for Oncological Hadrontherapy (CNAO) has been treating patients since 2011 with carbon-ion beams using the active-scanning modality. In such irradiation modality, the beam spot, which scans the treatment area, is characterised by very high particle-fluence rates (more than 105 s-1 mm-2). Moreover, the Bragg-peak is only ~1 mm-FWHM. Commercial tissue-equivalent proportional counters (TEPC), like the Far West Technologies LET-½, are large, hence they have limited capability to measure at high counting fluence rates. In this study we have used two home-made detectors, a mini-TEPC 0.81 mm2 in sensitive area and a silicon telescope 0.125 mm2 in sensitive area, to perform microdosimetric measurements in the therapeutic carbon-ion beam of CNAO. A monoenergetic carbon-ion beam of 189.5 ± 0.3 MeV/u scanning a 3 × 3 cm2 area has been used. Spectral differences are visible in the low y-value region, but the mean microdosimetric values, measured with the two detectors, result to be pretty consistent, as well as the microdosimetric spectra in the high y-value region.

Country
Italy
Keywords

Radiotherapy, Carbon, Radiation Monitoring, Humans, Microtechnology, Linear Energy Transfer, Health Facilities, Particle Accelerators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
Related to Research communities
Energy Research