Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the Royal Society B Biological Sciences
Article . 2019 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
Digital.CSIC
Article . 2019
Data sources: Digital.CSIC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rapid and positive responses of plants to lower precipitation predictability

Authors: Martí March-Salas; Mark van Kleunen; Mark van Kleunen; Patrick S. Fitze;

Rapid and positive responses of plants to lower precipitation predictability

Abstract

Current climate change is characterized by an increase in weather variability, which includes altered means, variance and predictability of weather parameters, and which may affect an organism's ecology and evolution. Few studies have experimentally manipulated the variability of weather parameters, and very little is known about the effects of changes in the intrinsic predictability of weather parameters on living organisms. Here, we experimentally tested the effects of differences in intrinsic precipitation-predictability on two herbaceous plants ( Onobrychis viciifolia and Papaver rhoeas ). Lower precipitation-predictability led to phenological advance and to an increase in reproductive success, and population growth. Both species exhibited rapid transgenerational responses in phenology and fitness-related traits across four generations that mitigated most effects of precipitation-predictability on fitness proxies of ancestors. Transgenerational responses appeared to be the result of changes in phenotypic plasticity rather than local adaptation. They mainly existed with respect to conditions prevailing during early, but not during late growth, suggesting that responses to differences in predictability during late growth might be more difficult. The results show that lower short-term predictability of precipitation positively affected fitness, rapid transgenerational responses existed and different time scales of predictability (short-term, seasonal and transgenerational predictability) may affect organisms differently. This shows that the time scale of predictability should be considered in evolutionary and ecological theories, and in assessments of the consequences of climate change.

Countries
Spain, Germany
Related Organizations
Keywords

info:eu-repo/classification/ddc/570, Environmental predictability, Local adaptation, Acclimatization, Climate Change, Phenotypic plasticity, Plants, Multiple-generation experiment, Transgenerational response, Adaptation, Physiological, Phenotype, Inter-seasonal predictability, Weather

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 30
    download downloads 47
  • 30
    views
    47
    downloads
    Data sourceViewsDownloads
    DIGITAL.CSIC3047
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Average
Top 10%
30
47
Green
bronze