
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Individual plasticity in response to rising sea temperatures contributes to an advancement in green turtle nesting phenology

Phenological changes (i.e. shifts in the timing of biological events) are among the most frequently reported population-level responses to climate change and are often assumed to be adaptive and increase population viability. These may be driven by both individual-level phenotypic plasticity and population-level evolutionary and demographic changes. However, few studies have explored how individual-level versus population-level processes drive phenological trends. Using a 31-year dataset of over 600 individually marked nesting green turtles ( Chelonia mydas ), we quantify the population- and individual-level temporal trend in their first nest date. Of the latter, approximately 30% is attributable to individual phenological plasticity in response to sea surface temperature, with females advancing their nesting by 6.47 days for every degree (Celsius) increase. The remaining change is almost entirely explained by individual- and population-level changes in size and breeding experience (correlates of age), as well as the number of clutches laid per season. This is the first study of individual-level phenological change in a marine ectotherm, furthering our understanding of how this and similar species may respond to rising temperatures.
- University of Exeter United Kingdom
Ecology, Climate Change, Reproduction, Temperature, Animals, Female, Seasons, Turtles, Nesting Behavior
Ecology, Climate Change, Reproduction, Temperature, Animals, Female, Seasons, Turtles, Nesting Behavior
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
