Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Philosophical Transactions of the Royal Society B Biological Sciences
Article . 2018 . Peer-reviewed
License: Royal Society Data Sharing and Accessibility
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding

Authors: Johan Olofsson; Eric Post;

Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding

Abstract

In contrast to that of the Pleistocene epoch, between approximately 2.6 million and 10 000 years before present, the extant community of large herbivores in Arctic tundra is species-poor predominantly due to human extinctions. We here discuss how this species-poor herbivore guild influences tundra ecosystems, especially in relation to the rapidly changing climate. We show that present herbivore assemblages have large effects on tundra ecosystem composition and function and suggest that the effect on thermophilic species expected to invade the tundra in a warmer climate is especially strong, and that herbivores slow ecosystem responses to climate change. We focus on the ability of herbivores to drive transitions between different vegetation states. One such transition is between tundra and forest. A second vegetation transition discussed is between grasslands and moss- and shrub-dominated tundra. Contemporary studies show that herbivores can drive such state shifts and that a more diverse herbivore assemblage would have even higher potential to do so. We conclude that even though many large herbivores, and especially the megaherbivores, are extinct, there is a potential to reintroduce large herbivores in many arctic locations, and that doing so would potentially reduce some of the unwanted effects of a warmer climate.This article is part of the theme issue ‘Trophic rewilding: consequences for ecosystems under global change’.

Country
United States
Keywords

Mammals, Evolutionary Biology, Conservation of Natural Resources, herbivory, Arctic Regions, Climate Change, treeline shifts, rewilding, Biological Sciences, Medical and Health Sciences, 333, mammoth steppe, Climate Action, climate change, state shifts, Animals, Herbivory, Tundra, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 1%
Top 10%
Top 1%
Green
bronze