
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Molecular understanding ofEubacterium limosumchemostat methanol metabolism
AbstractMethanol is a promising renewable energy carrier that can be used as a favourable substrate for biotechnology, due to its high energy efficiency conversion and ease of integration within existing infrastructure. Some acetogenic bacteria have the native ability to utilise methanol, along with other C1substrates such as CO2and formate, to produce valuable chemicals. Continuous cultures favour economically viable bioprocesses, however, the performance of acetogens has not been investigated at the molecular level when grown on methanol. Here we present steady-state chemostat quantification of the metabolism ofEubacterium limosum, finding maximum methanol uptake rates up to 640±22 mmol/gDCW/d, with significant fluxes to butyrate. To better understand metabolism of acetogens under methanol growth conditions, we sampled chemostats for proteomics and metabolomics. Changes in protein expression and intracellular metabolomics highlighted key aspects of methanol metabolism, and highlighted bottleneck conditions preventing formation of the more valuable product, butanol. Interestingly, a small amount of formate in methylotrophic metabolism triggered a cellular state known in other acetogens to correlate with solventogenesis. Unfortunately, this was prevented by post-translation effects including an oxidised NAD pool. There remains uncertainty around ferredoxin balance at the methylene-tetrahydrofolate reductase (MTHFR) and at the Rnf level.
- THE UNIVERSITY OF QUEENSLAND Australia
- University of Queensland Australia
- The University of Queensland Australia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
