Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sustainable Energy & Fuels
Article . 2023 . Peer-reviewed
License: Royal Society of Chemistry Licence to Publish
Data sources: Crossref
https://doi.org/10.1101/2022.1...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular understanding ofEubacterium limosumchemostat methanol metabolism

Authors: Jamin C. Wood; R. Axayacatl Gonzalez-Garcia; Dara Daygon; Gert Talbo; Manuel R. Plan; Esteban Marcellin; Bernardino Virdis;

Molecular understanding ofEubacterium limosumchemostat methanol metabolism

Abstract

AbstractMethanol is a promising renewable energy carrier that can be used as a favourable substrate for biotechnology, due to its high energy efficiency conversion and ease of integration within existing infrastructure. Some acetogenic bacteria have the native ability to utilise methanol, along with other C1substrates such as CO2and formate, to produce valuable chemicals. Continuous cultures favour economically viable bioprocesses, however, the performance of acetogens has not been investigated at the molecular level when grown on methanol. Here we present steady-state chemostat quantification of the metabolism ofEubacterium limosum, finding maximum methanol uptake rates up to 640±22 mmol/gDCW/d, with significant fluxes to butyrate. To better understand metabolism of acetogens under methanol growth conditions, we sampled chemostats for proteomics and metabolomics. Changes in protein expression and intracellular metabolomics highlighted key aspects of methanol metabolism, and highlighted bottleneck conditions preventing formation of the more valuable product, butanol. Interestingly, a small amount of formate in methylotrophic metabolism triggered a cellular state known in other acetogens to correlate with solventogenesis. Unfortunately, this was prevented by post-translation effects including an oxidised NAD pool. There remains uncertainty around ferredoxin balance at the methylene-tetrahydrofolate reductase (MTHFR) and at the Rnf level.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average