
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Spatial and seasonal variation in thermal sensitivity within North American bird species

AbstractResponses of wildlife to climate change are typically quantified at the species level, but physiological evidence suggests significant intraspecific variation in thermal sensitivity (non-stationarity) given adaptation to local and seasonal environments. Non-stationarity carries important implications for climate change vulnerability; for instance, sensitivity to extreme weather may increase in specific regions or seasons. Here, we leverage high-resolution observational data from eBird to understand regional and seasonal variation in thermal sensitivity for 20 bird species. Across their ranges, most birds demonstrated spatial and seasonal variation in both thermal optimum and breadth, or the temperature and range of temperatures of peak occurrence. Some birds demonstrated constant thermal optima or breadths (stationarity) while others varied according to local and current environmental conditions (non-stationarity). Across species, birds typically invested in either geographic or seasonal adaptation to climate. Intraspecific variation in thermal sensitivity is likely an important but neglected aspect of organismal responses to climate change.
- University of Wisconsin–Oshkosh United States
- Yale University United States
- Cornell University United States
- University of Wisconsin–Oshkosh United States
Birds, Ecology, Climate Change, North America, Temperature, Animals, Animals, Wild, Seasons
Birds, Ecology, Climate Change, North America, Temperature, Animals, Animals, Wild, Seasons
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
