Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2024.0...
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
Data sources: Apollo
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Increases in Arctic extreme climatic events are linked to negative fitness effects on the local biota

Authors: Maya Lemaire; Stef Bokhorst; Alistair Witheford; Marc Macias‐Fauria; Roberto Salguero‐Gomez;

Increases in Arctic extreme climatic events are linked to negative fitness effects on the local biota

Abstract

1.AbstractThe Arctic harbours uniquely adapted biodiversity and plays an important role in climate regulation. Strong warming trends in the terrestrial Arctic have been linked to an increase in aboveground biomass (Arctic greening) and community-wide shifts such as the northwards-expansion of boreal species (borealisation). Whilst considerable efforts have been made to understand the effects of warming trends in average temperatures on Arctic biota, far fewer studies have focused on trends in extreme climate events and their biotic effects, which have been suggested to be particularly impactful during the Arctic winter months. Here, we present an analysis of trends in two ecologically-relevant winter extreme events –extreme winter warming and rain-on-snow, followed by a meta-analysis on the evidence base for their effects on Arctic biota. We show a strong increase in extreme winter warming across the entire Arctic and high variability in rain-on-snow trends, with some regions recently experiencing rain-on-snow for the first time whilst others seeing a decrease in these events. Ultimately, both extreme events show significant changes in their characteristics and patterns of emergence. Our meta-analysis –encompassing 178 effect sizes across 17 studies and 49 species– demonstrates that extreme winter warming and rain-on-snow induce negative impacts on Arctic biota, with certain taxonomic groups –notably angiosperms and chordates (mostly vertebrates)– exhibiting higher sensitivity than others. Our study provides evidence for both emerging trends in Arctic winter extreme climate events and significant negative biotic effects of such events –which calls for attention to winter weather variability under climate change in the conservation of Arctic biodiversity, whilst highlighting important knowledge gaps.

Countries
United Kingdom, Netherlands
Keywords

extreme events, Arctic Regions, Climate Change, Rain, Biodiversity, Biota, fitness, Arctic, climate change, meta‐analysis, Snow, winter warming, Animals, rain‐on‐snow, Seasons, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid