
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Secondary-electron emission induced byin vacuosurface excitations near a polycrystalline Al surface

handle: 11590/267504
The double-differential spectrum of coincidences between backscattered electrons and secondary electrons (SEs) emitted from a polycrystalline Al surface bombarded with 100-eV electrons was measured. For energy losses of the scattered electron in between the work function of Al and the bulk plasmon energy, a sharp peak is observed in the SE spectra, corresponding to ejection of a single electron near the Fermi edge receiving the full energy loss and momentum of the primary electron. This process predominantly takes place when the primary electron suffers a surface energy loss in vacuum, and leads to SE ejection from the very surface. At energy losses just above the bulk plasmon energy, a sharp transition is observed, corresponding to a sudden increase in the depth of ejection. The latter is a direct consequence of the complementarity of surface and bulk plasmons, the so-called Begrenzungs effect.
- Hungarian Academy of Sciences Hungary
- FWF Austrian Science Fund Austria
- TU Wien Austria
- Hungarian Academy of Sciences Hungary
- TU Wien Austria
Energy Research, Condensed Matter Physics, Electronic, Optical and Magnetic Materials
Energy Research, Condensed Matter Physics, Electronic, Optical and Magnetic Materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
