
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Structure ofA=10–13Nuclei with Two- Plus Three-Nucleon Interactions from Chiral Effective Field Theory

pmid: 17678354
arXiv: nucl-th/0701038
Properties of finite nuclei are evaluated with two-nucleon (NN) and three-nucleon (NNN) interactions derived within chiral effective field theory (EFT). The nuclear Hamiltonian is fixed by properties of the A=2 system, except for two low-energy constants (LECs) that parameterize the short range NNN interaction. We constrain those two LECs by a fit to the A=3 system binding energy and investigate sensitivity of 4He, 6Li, 10,11B and 12,13C properties to the variation of the constrained LECs. We identify a preferred choice that gives globally the best description. We demonstrate that the NNN interaction terms significantly improve the binding energies and spectra of mid-p-shell nuclei not just with the preferred choice of the LECs but even within a wide range of the constrained LECs. At the same time, we find that a very high quality description of these nuclei requires further improvements to the chiral Hamiltonian.
4 pages, 4 figures
- Lawrence Berkeley National Laboratory United States
- Lawrence Berkeley National Laboratory United States
- Forschungszentrum Jülich Germany
- University of North Texas United States
- Helmholtz Association of German Research Centres Germany
Binding Energy, Hamiltonians, Nuclear Theory, 73 Nuclear Physics And Radiation Physics, FOS: Physical sciences, Spectra, Nuclei, Nuclear Theory (nucl-th), Sensitivity
Binding Energy, Hamiltonians, Nuclear Theory, 73 Nuclear Physics And Radiation Physics, FOS: Physical sciences, Spectra, Nuclei, Nuclear Theory (nucl-th), Sensitivity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).301 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
