
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Compositional engineering of perovskites with machine learning

Perovskites are promising materials candidates for optoelectronics, but their commercialization is hindered by toxicity and materials instability. While compositional engineering can mitigate these problems by tuning perovskite properties, the enormous complexity of the perovskite materials space aggravates the search for an optimal optoelectronic material. We conducted compositional space exploration through Monte Carlo (MC) convex hull sampling, which we made tractable with machine learning (ML). The ML model learns from density functional theory calculations of perovskite atomic structures, and can be used for quick predictions of energies, atomic forces, and stresses. We employed it in structural relaxations combined with MC sampling to gain access to low-energy structures and compute the convex hull for CsPb(Br1−xClx)3. The trained ML model achieves an energy prediction accuracy of 0.1 meV per atom. The resulting convex hull exhibits two stable mixing concentrations at 1/6 and 1/3 Cl contents. Our data-driven approach offers a pathway towards studies of more complex perovskites and other alloy materials with quantum mechanical accuracy. Peer reviewed
- Aalto University Finland
- Harbin Institute of Technology China (People's Republic of)
- University of Turku Finland
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Harbin Institute of Technology China (People's Republic of)
ta114, ta216, ta218
ta114, ta216, ta218
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
