
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Truncated thermal equilibrium distribution for intense beam propagation

An intense charged particle beam with directed kinetic energy (γ_{b}-1)m_{b}c^{2} propagates in the z direction through an applied focusing field with transverse focusing force modeled by F_{foc}=-γ_{b}m_{b}ω_{β⊥}^{2}x_{⊥} in the smooth-focusing approximation. This paper examines properties of the axisymmetric, truncated thermal equilibrium distribution F_{b}(r,p_{⊥})=Aexp(-H_{⊥}/T[over ^]_{⊥b})⊕(H_{⊥}-E_{b}), where A, T[over ^]_{⊥b}, and E_{b} are positive constants, and H_{⊥} is the Hamiltonian for transverse particle motion. The equilibrium profiles for beam number density, n_{b}(r)=∫d^{2}pF_{b}(r,p_{⊥}), and transverse temperature, T_{⊥b}(r)=[n_{b}(r)]^{-1}∫d^{2}p(p_{⊥}^{2}/2γ_{b}m_{b})F_{b}(r,p_{⊥}), are calculated self-consistently including space-charge effects. Several properties of the equilibrium profiles are noteworthy. For example, the beam has a sharp outer edge radius r_{b} with n_{b}(r≥r_{b})=0, where r_{b} depends on the value of E_{b}/T[over ^]_{⊥b}. In addition, unlike the choice of a semi-Gaussian distribution, F_{b}^{SG}=Aexp(-p_{⊥}^{2}/2γ_{b}m_{b}T[over ^]_{⊥b})⊕(r-r_{b}), the truncated thermal equilibrium distribution F_{b}(r,p) depends on (r,p) only through the single-particle constant of the motion H_{⊥} and is therefore a true steady-state solution (∂/∂t=0) of the nonlinear Vlasov-Maxwell equations.
- Princeton University United States
- University of North Texas United States
- Lawrence Berkeley National Laboratory United States
- University of California System United States
- College of New Jersey United States
Hamiltonians, Equilibrium, Boltzmann-Vlasov Equation, Space Charge, QC770-798, Distribution, Kinetic Energy, Nuclear and particle physics. Atomic energy. Radioactivity, Thermal Equilibrium Accelerators, 70 Plasma Physics And Fusion Technology, Kinetic Theory, Accelerators, Focusing
Hamiltonians, Equilibrium, Boltzmann-Vlasov Equation, Space Charge, QC770-798, Distribution, Kinetic Energy, Nuclear and particle physics. Atomic energy. Radioactivity, Thermal Equilibrium Accelerators, 70 Plasma Physics And Fusion Technology, Kinetic Theory, Accelerators, Focusing
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
