
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep-XFCT: deep learning 3D mineral liberation analysis with micro-X-ray fluorescence and computed tomography

Quantitative characterisation through mineral liberation analysis is required for effective minerals processing in areas such as mineral deposits, tailings and reservoirs in industries for resources, environment and materials science. Current practices in mineral liberation analysis are based on 2D representations, leading to systematic errors in the extrapolation to 3D volumetric properties. The rapid development of X-ray microcomputed tomography (μCT) opens new opportunities for 3D analysis of features such as particle- and grain-size characterisation, determination of particle densities and shape factors, estimation of mineral associations, and liberation and locking. To date, no simple non-destructive method exists for 3D mineral liberation analysis. We present a new development based on combining μCT with micro-X-ray fluorescence (μXRF) using deep learning. We demonstrate successful semi-automated multimodal analysis of a crystalline magmatic rock by obtaining 2D μXRF mineral maps from the top and bottom of the cylindrical core and propagating that information through the 3D μCT volume with deep learning segmentation. The deep learning model was able to segment the core to obtain reasonable mineral attributes. Additionally, the model overcame the challenge of differentiating minerals with similar densities in μCT, which would not be possible with conventional segmentation methods. The approach is universal and can be extended to any multimodal and multi-instrument analysis for further refinement. We conclude that the combination of μCT and μXRF can provide a new opportunity for robust 3D mineral liberation analysis in both field and laboratory applications.
- UNSW Sydney Australia
- Curtin University Australia
FOS: Computer and information sciences, Technology, Computer Science - Machine Learning, T, X-ray fluorescence, FOS: Physical sciences, computed tomography, deep learning segmentation, Machine Learning (cs.LG), Physics - Data Analysis, Statistics and Probability, correlative microscopy, Data Analysis, Statistics and Probability (physics.data-an), deep learning segmentation; mineral liberation analysis; computed tomography; X-ray fluorescence; correlative microscopy, mineral liberation analysis
FOS: Computer and information sciences, Technology, Computer Science - Machine Learning, T, X-ray fluorescence, FOS: Physical sciences, computed tomography, deep learning segmentation, Machine Learning (cs.LG), Physics - Data Analysis, Statistics and Probability, correlative microscopy, Data Analysis, Statistics and Probability (physics.data-an), deep learning segmentation; mineral liberation analysis; computed tomography; X-ray fluorescence; correlative microscopy, mineral liberation analysis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
