Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao COMPEL The Internati...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
Article . 2012 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Magnetic field mitigation by means of passive loop: technical optimization

Authors: CANOVA, Aldo; FRESCHI, FABIO; GIACCONE, LUCA; GUERRISI, ALESSANDRA; REPETTO, MAURIZIO;

Magnetic field mitigation by means of passive loop: technical optimization

Abstract

PurposeThe purpose of this paper is to present an approach to design passive loop systems in order to reach good performances.Design/methodology/approachThe optimization has been performed by means of the MATLAB optimization toolbox “Gatool” which solves the optimization problems with a genetic algorithm.FindingsSeveral configurations have been analyzed by varying the number of loops from 2 to 15, whose geometry has been chosen by the genetic algorithm. Considering a five loops configuration, along the reference path it is possible to obtain a shielding factor almost constant and equal to 3.5.Originality/valueThe optimized configurations have been compared with a practical employed layout composed of 17 closed loops placed above and around the junction zone. The shielding factors obtained by the six loops configuration are comparable with the ones of the practical layout.

Countries
Australia, Italy
Keywords

Mitigation, Passive loop, 2208 Electrical and Electronic Engineering, 006, Genetic algorithms, 2604 Applied Mathematics, Magnetic fields, Shield, 1706 Computer Science Applications, Magnetic fields; Genetic algorithms; Mitigation; Shield; Passive loop, 1703 Computational Theory and Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Top 10%
Average