
Found an issue? Give us feedback
IEEE Transactions on Power Systems
Article . 1997 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Mean field theory for optimal power flow

Authors: Kazuo Katou; Hideki Suzuki; Luonan Chen;
doi: 10.1109/59.627845
Mean field theory for optimal power flow
Abstract
We present a method based on mean field theory to cope with the mixed nonlinear integer programming, especially with optimal power flow problems involving both continuous and discrete variables, in a more exact manner. That is, we first formulate OPF as a mixed integer programming, and then derive its mean field equations as well as the annealing algorithm, by taking advantage of the characteristics of the original problems. Numerical simulations have verified effectiveness of this approach for small power systems.
Related Organizations

Found an issue? Give us feedback
Fields of Science (3) View all
Related to Research communities
Energy Research