Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 1997 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mean field theory for optimal power flow

Authors: Kazuo Katou; Hideki Suzuki; Luonan Chen;

Mean field theory for optimal power flow

Abstract

We present a method based on mean field theory to cope with the mixed nonlinear integer programming, especially with optimal power flow problems involving both continuous and discrete variables, in a more exact manner. That is, we first formulate OPF as a mixed integer programming, and then derive its mean field equations as well as the annealing algorithm, by taking advantage of the characteristics of the original problems. Numerical simulations have verified effectiveness of this approach for small power systems.

Powered by OpenAIRE graph
Found an issue? Give us feedback