
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficient ground grid designs in layered soils

doi: 10.1109/61.686969
A detailed analysis of the effects of ground grid configuration on grounding performance has been carried out for uniform and horizontally stratified soils with multiple layers. The results of the analysis reveal that the most efficient and cost-effective design is highly dependent on soil structure type and characteristics. In the absence of ground rods, grounding grids with uniform mesh size are quite efficient in soils having a thin (relative to grid size) high resistivity (relative to the lower layers) top soil, while grids with small mesh size at the periphery of the grid provide optimum performance in uniform soils and soils with low resistivity top soils. Ground rods were found to be effective only when a significant portion of their length is in contact with a low resistivity soil, as expected.
- Hongik University Korea (Republic of)
- Hongik University Korea (Republic of)
- Safe Engineering Services & Technologies (Canada) Canada
- Hongik University Korea (Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
