
Found an issue? Give us feedback
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Modeling and simulation of PEM fuel cell with bond graph and 20sim
Authors: Francisco Gonzalez-Longatt; F.J. Arteaga-Bravo; C. Peraza; Carlos Villanueva; José Gregorio Díaz;
Abstract
Due to the increasing and highly promising use of fuel cells as an important electrical energy source, its modeling has been a major research issue for some years, trying to find mathematical models precise enough to accurately predict how a cell will behave in a real world system, without becoming too complex. Many attempts have been made using different techniques. In this paper, the authors describe a static model for the PEM (proton exchange membrane) fuel cell, developed by means of bond graphs and simulated in 20 sim. The model proves to be simple and accurate, reproducing the characteristic curve of a commercial PEM fuel cell.
Related Organizations
- National Experimental University of the Armed Forces Venezuela
- University of Carabobo Venezuela
- University of Carabobo Venezuela
- National Experimental University of the Armed Forces Venezuela
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
14
Average
Top 10%
Average
Beta