Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2018 . Peer-reviewed
License: IEEE Open Access
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm

Authors: Mahammad A. Hannan; Molla S. Hossain Lipu; Aini Hussain; Mohamad H. Saad; Afida Ayob;

Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm

Abstract

The state of charge (SOC) is a critical evaluation index of battery residual capacity. The significance of an accurate SOC estimation is great for a lithium-ion battery to ensure its safe operation and to prevent from over-charging or over-discharging. However, to estimate an accurate capacity of SOC of the lithium-ion battery has become a major concern for the electric vehicle (EV) industry. Therefore, numerous researches are being conducted to address the challenges and to enhance the battery performance. The main objective of this paper is to develop an accurate SOC estimation approach for a lithium-ion battery by improving back-propagation neural network (BPNN) capability using backtracking search algorithm (BSA). BSA optimization is utilized to improve the accuracy and robustness of BPNN model by finding the optimal value of hidden layer neurons and learning rate. In this paper, Dynamic Stress Test and Federal Urban Driving Schedule drive profiles are applied for testing the model at three different temperatures. The obtained results of the BPNN based BSA model are compared with the radial basis function neural network, generalized regression neural network and extreme learning machine model using statistical error values of root mean square error, mean absolute error, mean absolute percentage error, and SOC error to check and validate the model performance. The obtained results show that the BPNN based BSA model outperforms other neural network models in estimating SOC with high accuracy under different EV profiles and temperatures.

Keywords

electric vehicle, backtracking search algorithm, the state of charge, TK1-9971, Lithium-ion battery, back propagation neural network, Electrical engineering. Electronics. Nuclear engineering

Powered by OpenAIRE graph
Found an issue? Give us feedback