
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Real-Time Estimation of Battery State of Charge With Metabolic Grey Model and LabVIEW Platform

Accurate state-of-charge (SoC) estimation is crucial to guarantee the safety and reliability of lithium-ion batteries. This paper aimed to develop an advanced battery estimation method for electric vehicles based on the grey model without the need of a high-fidelity battery model demanding high computation power. The metabolic grey model (MGM) introduced metabolism mechanism to adjust the model parameters according to the evolving operating status and conditions and estimate the state of charge. To further validate the feasibility of the proposed method, the analog acquisition, communication system, and SoC estimation algorithms were programmed to embed within a LabVIEW platform. The performance of the proposed SoC estimation with MGM algorithm was finally investigated with a battery-in-loop platform under different dynamic loading profiles. The experimental results indicated that the MGM can estimate SoC that involved small samples and poor information in real time, with the maximum errors of no over 4% under various loading conditions.
- Guangxi University China (People's Republic of)
- Guangxi University China (People's Republic of)
real-time estimation, grey model, state of charge, battery management system, TK1-9971, LabVIEW platform, Lithium-ion battery, Electrical engineering. Electronics. Nuclear engineering
real-time estimation, grey model, state of charge, battery management system, TK1-9971, LabVIEW platform, Lithium-ion battery, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
